
Transforming Product Catalogue Relational into

Graph Database: a Performance Comparison
Josip Lorincz*, Vlatka Huljić**, Dinko Begušić*

* Faculty of electrical engineering, mechanical engineering and naval architecture (FESB)/Department of electronics

and computing, University of Split, Split, Croatia, e-mail: josip.lorincz@fesb.hr; dinko.begusic@fesb.hr
** Kron d.o.o., Split, Croatia, e-mail: vlatka.huljic@kron.hr

Abstract - Due to the continuous expansion of telecom

operators (TOs) services and subscriber’s base, a number of

objects in TO product catalogue (PC) traditionally developed

employing some relational database (RD) rapidly increase.

This can result in degraded PC database performance in terms

of reduced object visibility or slow query response time, which

mandates a search for new types of databases that can cope

with such challenges. A possible solution to these challenges

is the transformation of RD into some graph database (GD),

with visualisation and organisation capabilities that can cope

with the increasing complexity of PC RDs. Hence, in this

paper, a novel implementation concerning the transformation

of a set of PC data and functions of the TO RD into

ArangoDB GD is proposed. The proposed approach allows the

upgrading of PC RD into a higher presentation layer through

the implementation of the GD, which enables advanced data

analysis and visualization. The developed solution shows that

GD with appropriately structured queries, data and links

between them, improves the visibility and simplifies the entire

search process. Obtained results show that GD outperforms

RD in terms of search query response time for different

functions executed on an equal amount of database objects.

Keywords - Product Catalogue, eTOM, SID, REST API,

Graph, Relational, Database, ArangoDB, NoSQL, BSS/OSS

I. INTRODUCTION

The telecom operator’s (TOs) product catalogue (PC)

containing all details of the products (services) to

costumers is a very important module for their business.

The PC structure defined with Enhanced Telecom

Operations Map (eTOM) standards consists of entities

and relationships based on which, packages and

telecommunication service offers to the costumers are

formed. eTOM is a part of Frameworx, developed by the

TeleManagement Forum (TM Forum) [1]. The TM

Forum is an industry association focused on transforming

business processes, operations, and systems for managing

and monetizing online information, communication, and

entertainment services [2]. Hence, Frameworx is a suite

of best practices and standards that provide the blueprint

for effective and efficient business operations of

enterprises such as TOs.

TM Forum Frameworx contains the following frames:

application framework, business process framework,

information framework and integration framework. The

business process framework or eTOM describes different

levels of enterprise (TO) processes, according to their

significance and priority for the business [3]. Shared

Information Data (SID) model or the information

framework describes the information entities over which

the processes operate, with their characteristics and

relationships. SID provides definitions for all the

information that passes through the enterprise among

business partners and corresponding service providers.

SID domain corresponds to the lowest level of the eTOM

model and is central to the TOs next generation

operations system support (NGOSS). This model

represents a key principle for enhancing operations

support systems (OSS) and business support systems

(BSS) processes interoperability of TOs [4].

Therefore, the SID model offers a “common

language” for software developers and integrators for

describing information management of TOs processes. It

enables simpler and more efficient integration of

BSS/OSS software applications deployed by different

vendors into the TO infrastructure. SID model takes into

account the principles and concepts needed for defining

shared information. This model also precisely prescribes

many of the business elements (known as “entities”) of

interest to TOs and corresponding attributes that specify

these entities (known as Aggregate Business Entities

(ABSs)).

SID as model covers a vast area of TO activities and

many companies in the world are working on the

development and implementation of TO systems covering

SID related process. Currently, the SID model is based on

seven domains (market and sales, product, customer,

service, resource, engaged party and common business

entities domain) [5]. Product domain presented in Figure

1. contains different ABEs, which deals with product,

product specification, product offering, strategic product

portfolio plans, product performance, product usage,

product configuration, product test and loyalty [6]. In

fact, SID product domain elements are those elements

which are fully covered and specified within the PC of

most of the TOs.

The product domain as part of the SID is one of the

TO system domains which has been analysed in this

paper and PC as the main component of the SID product

domain has been developed utilizing graph database (GD)

concept. Since the number, lifecycle and contract

operations related to TO products’ can be huge,

especially for large TOs, PCs eventually become very

complex and hard to manage by means of relational

databases (RDs) which are commonly used so far for PC

management. Thus, in this paper, several functions of the

real PC used by a prominent European TO are extracted

from an implemented RD and transformed into the newly

developed multifunctional GD. The capabilities and

functions of a GD implemented on a real model of PC are

explored and compared with that equivalent in the RD.

Figure 1: Product domain aggregate business entities of the SID model [6]

The comparison of the two PC database implementations

shows that the proposed GD implementation outperforms

the RD implementation.

The remaining structure of this paper is organised as

follows: related work presenting an overview of relevant

literature dedicated to the transformation of RD into GD

is discussed in Section II. Section III explains research

motivation and describes the analysed PC of TO. In

Section IV, the transformation of the RD into GD is

presented. In the next Section V, the functionality of PC

as GD is described. A comparison of developed

multifunctional GD and RD in terms of performance are

shown in Section VI. Finally, some concluding remarks

are given in Section VII.

II. RELATED WORK

There has been some extent of work in the area of

transforming an RD into a GD. Soussi in [7] analyses the

possibility that an RD could be transformed into some

other model that can further be used for developing the

GD. Some of the models proposed in the literature are

based on eXtensible Markup Language (XML), Entity-

Relationship (ER) or Resource Description Framework

(RDF) [8-10]. The basic drawback of these approaches is

in the lack of possibility to detect interactions among

generated nodes without the appropriate ontology which

is needed for defining tables and data being built

beforehand. Hence, efficient algorithms for converting

RD into GD by building a graph through some other in-

between model are yet to be proposed.

The other approach to the transformation of RD into

GD is based on tools that enable feedback from an RD in

the form of a graph, through posing a query in a format of

search keywords that could be found somewhere in the

database tuples. Such tools proposed in literature differ in

modelling the tuples as the graph nodes which are

connected by edges representing foreign keys or

transitive tables [11-14]. Recently proposed tools for

generating a GD from an RD enable graph mining

techniques on relational data, however, the drawback of

these tools is that they rely on the user which must strictly

define the data being converted [15-16]. Another

approach in transforming RD to GD proposed in [17] and

[18] are based on conceptual graphs or relation-of-

relations graphs, respectively. The first approach is not

suitable for frequent subgraph mining from the

perspective of entities, while the second approach,

although having appropriate conversion duration, lacks

testing on larger databases. Approaches for converting

the entire RD to a GD are proposed in [19 -21]. The

approach presented in [19] is based on transforming

dependency graphs for the entities in the system into a

hypergraph model for the RD, which can be used to

develop the domain relationship model that can be

converted into a GD model. In [20], an approach to

automatically migrate data and queries from RD to GD is

presented. Algorithms proposed in [21] are independent

of the data semantics and provide the conversion between

RD and GD without data loss.

Presented overview of solutions for transferring RD

into GD confirms that there is no ideal tool that can

merge automatic transfer of any RD into (any) GD. Due

to differences in structure and data organization of

versatile RDs and GDs, the conversion tools must be

adopted for specific RD and GD, in order to read the

relational data of RD and load it into the GD in as few

steps as possible. Hence in this paper, another approach

to transferring RD characteristic for PC of TOs into

contemporary GD is presented.

There are a number of GDs currently available, such as

Sparksee (formerly known as DEX), AllegroGraph,

Neo4j, HyperGraphDB, Infinite Graph, ArangoDB,

OrientDB, etc. and comparison of these and some other

GDs are given in [22-23]. According to [23], ArangoDB

and Neo4j GD obtain the highest scores in terms of

comparison based on features such as flexibility, query

language, sharing, backups, multimodality, multi-

architecture capabilities, scalability and cloud readiness.

This motivates the selection of ArangoDB as one of the

best candidates for analyses presented in this paper.

Although ArangoDB and Neo4j outperform other

currently available GDs in terms of mentioned features,

results of performance comparison among RDs and

Neo4j GD have been already reported in [24-25].

However, to the best of our knowledge, a performance

comparison between the RD and ArangoDB GD on the

concrete application has not been reported in the

literature. To fill this gap, this paper presents

performance comparison among ArangoDB GD and an

RD for PC as the specific TO use case.

III. RESEARCH MOTIVATION FOR PRODUCT

CATALOGUE TRANSFORMATION

To achieve the functionality of the PC, modules that

contain product information such as the basic entities (the

general names for any service), attributes, prices, product

offerings, etc. are required [26]. The existence of the

relationship between these entities enables the creation of

complex products grouped in packages offered to the

users by the TO. The structure and number of elements of

each TO PC can differ in complexity and size.

The data model of the PC module analysed in this

work contains different basic entities (attributes,

products, product relations, attribute mapping, products

business rules, product offerings, prices, price lists and

sales context) which are presented in Figure 2. Links

between entities of the PC model emphasize the complex

structure of the PC.

In the presented analyses, part of the real PC model

used by one European middle-size TO was originally

Figure 2: PC model

Figure 3: Example of an existing PC model in the relational database

implemented and used in the form of the RD. An example

presenting a listing of the PC elements in the form of the

table, with main products structured in the RD are shown

in Figure 3. A Toad software tool was used to work with

RDs (Figure 3). This tool allows developers, database

administrators and database analysts to manage RDs and

non-relational databases by Structured Query Language

(SQL) queries.

Since it is challenging to cope with the multitude of

data and have a good overview of all database elements,

administrators of such RDs start to have the problem of

managing the PC. The question that arises was can some

other PC data structure offer faster PC database search

and better visualisation of PC elements, especially in light

of necessity for the continuous expenditure of TOs PC

with new products and corresponding elements. The

transformation of the existing RD into new datasets with

an upgrade to the GD was a valuable option to the TO.

Hence, the research presented in this paper was motivated

with the goal related to the transformation of data from an

RD into the GD format. This can gain a new visualisation

dimension of PC and additional information that will

serve for better analysis of the PC data. The idea was to

use the graph of the database to attribute a PC in order to

get information about: where the services are used and

under what conditions, what are the geographic locations

of services used by users and how used services are

represented. All this information cannot be easily

visualized in existing TO RD. However, such information

is important for TO marketing, which must optimize

offering of the service in the geographical area covered

by TO and also for the technical implementation and

maintenance of the TO equipment including fault

recovery.

IV. IMPLEMENTING PRODUCT CATALOGUE BY MEANS

OF GRAPH DATABASE

According to presented in the previous section, PC

database management can be a difficult task when it

comes to large amounts of data, and the problem can be

compounded when multiple data formats are involved.

For the development of GD, in this work, the open-source

ArangoDB as not only SQL (NoSQL) database type

having GD capabilities were selected for administration

of PC data transformed from Oracle v12c RD. This

database type is specifically designed to manage multiple

data formats in a single instance. The ArangoDB provides

GD capabilities, database document management and

key-value storage [27].

Unlike RDs that have a strictly defined data schema,

ArangoDB has a dynamic data schema [28]. Data in

ArangoDB are stored as JavaScript Object Notation

(JSON) documents. The documents are grouped into

“collections” that correspond to a table in RDs. The

documents in the collection have a unique primary

document key that automatically stores and encodes the

identity of the document, thus storing the document in the

key/value container. The created collection consists of

documents stored as vertices and edges in the form:

_from the source point value _to the value of the target

vertex [29]. Combining vertices and edge collections

produce a graph. The proposed transformation of data

from the RD into GD is performed through the following

phases:

A. The first phase: export data from a relational

database

The first phase in the process of transforming PC

from the RD into GD structure is related to the export of

selected data from an RD into a GD, more precisely into

the ArangoDB database (Figure 4). These data operations

are performed using SQL queries (Figure 4a).

The first two queries extract the data that will be

entered into the vertices collections of GD, and the third

query extract data which will be extrapolated into the

edges collection of GD. The first phase ends when data

from the RD are extracted in a .xls file format that is

stored in Comma Separated Values (CSV) data format

(Figure 4a).

B. The second phase: import data into ArangoDB

The second phase of transferring RD into GD is

dedicated to the import of exported data form RD into the

GD (Figure 4). The ArangoDB contains a command-line

client tool called Arangoimport (Figure 4a). This client

command tool can be used to import JSON, CSV and tab-

separated values (TSV) format data into ArangoDB. In

our analyses, JSON and CSV as common data formats

are used (Figure 4a). Arangoimport is called from the

command line every time when each file (JSON or CSV)

wants to be imported into the GD (Figure 4a). Hence, the

a) b)

Figure 4. The proposed concept for transforming relational into GD based on relational data export and: a) direct SQL queries, b) REST API methods

CSV data format can be imported directly (Figure 4a), or

it can be formatted into JSON format using format

converter and imported in GD (Figure 4a). The data

importing results with the transfer of PC data objects

consisted of attribute-value pairs and array data types in

GD. When data import is done, it is possible to continue

working with the same data model previously used.

Another way of importing data from an RD is to

expose the ArangoDB application programming interface

(API) over the hypertext transfer protocol (HTTP) server,

making the server easily accessible for different clients

and tools (Figure 4b). Data exported in the first phase are

reachable through exposed API and converted into JSON

format for purpose of transmission into ArangoDB.

According to Figure 4b, the JSON data is sent and

received over a well-known HTTP server protocol which

provides a RESTful API (REST API).

The REST API methods (GET, POST, PUT,

DELETE, PATCH, etc.) represent the architectural style

used for creating a web service for the transfer of

resource state views (Figure 4b). Usage of these methods

is popular in practice due to their simplicity and the fact

that they rely on existing HTTP protocol and

corresponding features, while HTTP defines the format

and method of messaging [30].

C. The third phase: creating collections in ArangoDB

and graph formations

In ArangoDB, documents are stored in collections.

Collections have names, which describe what kind of

information the documents contain. Each document

requires a key that uniquely identifies it within a

collection. It can be assigned by the user upon creation,

or ArangoDB will generate one. Document keys and

document identifiers (IDs) are always indexed. The index

on the _key attribute is called a primary index. It exists

for each collection and can’t be removed. There are two

types of collections in ArangoDB: vertex and edge

collections (Figure 5). Documents in an edge collection

have two additional attributes, _from and _to. Both must

have document IDs to link documents together. The

document that links them is called an edge and the linked

documents are called vertices in the graph model (Figure

5). When creating a graph model based on an RD model,

it is important to be aware that the row in the RD is

equivalent to a node in the GD, and that the table name is

equivalent to the node label in the GD model.

The ArangoDB uses ArangoDB query language

(AQL) for executing procedures over graphs, as well as

over individual collections. Although some keywords

overlap, AQL syntax is different from RD SQL syntax.

The most notable difference is in the concept of loops in

AQL, which makes AQL look like programming

language [31]. AQL has a language construct for looping

through data and the most common form is the FOR loop

used with a collection of documents (similar to SELECT

in SQL). Complex object and array manipulations can be

done using AQL queries (INSERT, UPDATE,

REPLACE, DELETE, etc.) and operators (FILTER,

SORT, LIMIT, etc.), what makes AQL very powerful

query language that remains easy to write and read.

V. THE FUNCTIONALITY OF PRODUCT CATALOGUE AS

GRAPH DATABASE

As previously indicated, the PC presents description

and characteristics of TO services offered to customers

and contains all necessary information related to the

specific product. An example of graphical representation

obtained through developed GD for specific TO product

is presented in Figure 5. The graphical representation

obtained through implementation of GD shows the

relationship between templates (e.g. user mail addresses

(“MAIL”), contracts (“OTT ugovor”), etc. in Figure 5) of

PC and their attributes which can be characteristic for the

specific template (e.g. additional service (“Dodatna

usluga”), service and service packet (“Usluga i paket

usluge”), etc. in Figure 5) or shared among different

templates (e.g. service name (“Naziv usluge”), name and

surname of the owner (“Ime i prezime vlasnika”), etc. in

Figure 5).

The template is prepared textual document used when

generating a new document instance and its attributes are

used to describe an entity or to extend the meaning of an

entity. This means that if there is a link between

templates and their attributes, internal logic generates a

document with its attributes representing dynamic fields

in it. The view is filtered by the name contained in the

template or by attribute description, what generates query

results as those presented in Figure 5. This approach

gives a credible view of all related and unrelated elements

in the graph of GD. In this way, an error can easily be

detected if there must be a connection between PC

elements (templates and attributes), but no link exists in

the graph model. Unlike RDs where data search is a long

process, GD improves the entire search process by simple

visualization of the data and the links between them

(Figure 5).

Services offered by the TO are tracked through the

concept of the customer’s assets. They represent the state

of services that the customers use at any given time. For

TOs, it is important to have a correlation between used

services and corresponding products and locations where

they are installed. As an example, for some selected

dataset, Figure 6 presents a relationship between products

Figure 5. The relationship of templates and attributes in GD

and locations of product usage, where templates (e.g.

“SESVETE”, “ZAGREB”, etc. in Figure 6) represent

locations of used products, while attributes (e.g. S service

packet no. 19 (“S paket 19”), L service packet no. 19 (“L

paket 19”), etc. in Figure 6) identify a specific product.

The selected dataset realistically shows the relationship of

products sold to a customer in a particular place of

residence (Figure 6). Displaying the density of services

and corresponding product distribution by location

(place), gives the TO an insight into the actual state of

use of the specific service and corresponding product.

This information is useful for making decisions about the

need to change the current state, i.e. create new services

and corresponding products or use existing ones in the

areas not covered with specific TO service.

Hence, developed ArangoDB GD ensures one of the

main advantages of GDs, which is performing simple

queries on a diverse set of data, what results with a

comprehensive and detailed view of the requested

information.

VI. PERFORMANCE ANALYSES

Performance analysis is based on a comparison of

developed multifunctional GD (ArangoDB) and existing

RD (Oracle). Analyses are based on the measurement of

SQL and AQL query execution response time. For

realistic comparison, the same amount of data related to

the PC of TO was used for comparing query response

time in RD and GD. This measurement is performed for

the three queries (Q1, Q2, and Q3) executed in the RD

and GD (Figure 7). Queries differ in terms of scope and

complexity of the search, which is directly related to the

number of analyzed database elements.

The Q1 query in the RD search for a custom set of data

(e.g. places, products, link type, etc.) and 90 database

elements are the result of the search. The Q1 query

execution time in the RD is 109 ms, while in the

ArangoDB GD is significantly faster and equals to 0.695

ms (Figure 7).

The Q2 query provides information about which

attributes are attached to the selected template and gives 9

elements as a result. The speed of query execution differs

significantly in this example, because the GD has a great

advantage in terms of execution time which is equal to

0.960 ms and the 43 ms for the RD (Figure 7).

To have reliable analyses, a larger amount of PC data

was taken in the next example with the Q3 query, where

the query results in 1000 database elements. The Q3

query search for all the attributes contained in the

products table (collection) of the PC (e.g. group

(“GRUPA”), type (“VRSTA”), model (“TIP”), line

(“LINIJA”)). In this case, query execution time in the RD

is 226 ms (Figure 7), while in the GD equals to 5.355 ms.

Based on the measured execution time of individual

queries, it can be concluded that query execution in the

GD is significantly faster compared to the RD (Figure 7).

For some query types, GD outperforms RD with more

than 42 times faster response time. Also, in Figure 7 can

be seen that better performance is evident for GD where

the query execution time does not increase significantly

with the increase in the number of search data objects,

which is not the case with RD. Hence in developed GD,

queries are executed faster and outcomes of queries give

more comprehensive results in terms of their

visualization. The faster execution time of GD is a direct

consequence of the better structural organization of

ArangoDB GD, what confirms that this type of GD is

suitable for transforming the PC of TO from a

conventional RD.

VII. CONCLUSION

The PC structure based on eTOM standards contains

entities and relationships according to which packages of

telecommunication services are formed and offered to

users. PCs are traditionally developed in the form of an

RD. Due to the constant increase in a number of services

and subscriber base, the complexity of relational PC

database management became challenging for TO

database administrators. This requires new concepts in

the development and management of the relational PC

databases of TOs. This paper gives a contribution to

devising such new concepts through the presentation of a

new approach for transformation of TO relational PC

database into GD. The process phases of transforming

RD (Oracle) into GD (ArangoDB) are described, with the

presentation of developed GD structure and performance

comparison among analyzed databases.

It is shown that GD with advanced queries supported

through AQL, graph data structure and links between GD

elements, simplify the entire search process and it is

applicable for use when a larger amount of different data

structures must be managed. A comparison of analysed

Figure 6. Relationship between product and location of product usage presented in GD

Figure 7. Query execution response time

databases show that GD offers a higher presentation level

which enables more comprehensive data analysis and

visualization. The greatest advantage of developed GD

over the RD is reflected in the speed of query execution,

for which GD significantly outperforms RD. Due to a

very important feature of managing and storing large

amounts of versatile data structures, the ArangoDB is

expected to be widely used in practice, and it is

particularly suitable for the development of TO PCs. Our

future research activities will be focused on the

automatization of data transfer form RDs into GDs.

REFERENCES

[1] Internet, August 2019, https://www.tmforum.org/

[2] Internet, August 2019,

https://www.cisco.com/c/en/us/products/collateral/services/high-
availability/white_paper_c11-541448.html

[3] Internet, August 2019,

http://www.ilsa.kz/etom/main/tamdomain5.htm
[4] Internet, August 2019,

http://www.sebconsulting.ie/understanding_ngoss_sid.html

[5] Internet, August 2019,
https://www.tmforum.org/Browsable_HTML_SID_R18.5/content/3E3F

0EC000E9_root.html

[6] Internet, August 2019, https://www.tmforum.org/tm-forum-

frameworx-2/

[7] R. Soussi, “Querying and extracting heterogeneous graphs from

structured data and unstrutured content”, PhD thesis, Ecole Centrale
Paris, 2012.

[8] M. Hert, G. Reif, H. C. Gall, “A comparison of rdb-to-rdf mapping

languages”, In Proc. of the I-SEMANTICS '11, 2011. pp: 25 – 32.
[9] W. Hu, Y. Qu, “Discovering simple mappings between relational

database schemas and ontologies”, In Proc. of the ISWC/ASWC '07,

2007., pp. 225-238.
[10] J. Sequeda, M. Arenas, D. P. Miranker, “On directly mapping

relational databases to rdf and owl”, In Proc. of the WWW '12, 2012.,

pp. 649-658.
[11] V. Hristidis, Y. Papakonstantinou, “Discover: Keyword search in

relational databases,” in Proc. of the 28th VLDB '02, 2002. pp. 670–

681.

[12] S. Agrawal, S. Chaudhuri, G. Das, “Dbxplorer: enabling keyword
search over relational databases,” in Proc. of the ACM SIGMOD '02,

2002, pp. 627–627.

[13] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, H.
Karambelkar, “Bidirectional expansion for keyword search on graph

databases”, in Proc. of the VLDB '05, 2005, pp. 505–516.

[14] H. He, H. Wang, J. Yang, P. S. Yu, “Blinks: ranked keyword
searches on graphs,” in Proc. of the ACM SIGMOD '07, 2007., pp.

305–316.

[15] K. Xirogiannopoulos, U. Khurana, A. Deshpande, “Graphgen:
Exploring interesting graphs in relational data”, Proceedings of the

VLDB Endowment, vol. 8, no. 12, 2015., pp. 1-4.

[16] D. Simmen, K. Schnaitter, J. Davis, Y. He, S. Lohariwala, A.
Mysore, V. Shenoi, M. Tan, Y. Xiao, “Large-scale graph analytics in

aster 6: bringing context to big dana discovery,” Proceedings of the

VLDB Endowment, vol. 7, no. 13, 2014., pp. 1405–1416.
[17] S. Palod, “Transformation of relational database domain into

graphs based domain for graph based data mining,” Department of

Computer Science and Engineering, University of Texas at Arlington,
Arlington, SAD, 2004.

[18] S. Pradhan, S. Chakravarthy, A. Telang, “Modeling relational data

as graphs for mining” in Proc. of the COMAD '09, 2009., pp. 1-6.

[19] S. Bordoloi, B. Kalita, “Designing Graph Database Models from

Existing Relational Databases”, International Journal of Computer

Applications, Volume 74, No.1, 2013, p.p.: 25-31.
[20] R. De Virgilio, A. Maccioni, R. Torlone, “Converting relational to

graph databases,” in Proc. of the GRADES '13, 2013, pp. 1-6.

[21] O. Orel, S. Zakošek, M. Baranović, Property Oriented Relational-
To-Graph Database Conversion, Automatika, Vol. 57(2016), 3, 2016,

p.p.: 836–845.

[22] R. Angles, “A comparison of current graph database models”, in
Proc. of the ICDEW '12, 2012, pp. 171–177.

[23] D. Fernandes1, J. Bernardino, “Graph Databases Comparison:

AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB”, In
Proc. of the DATA 2018,2018., pp. 373-380.

[24] O. Est, “Comparative analysis of relational and graph database

behavior on the concrete web application”, Master thesis, Tallin
University of Technology, 2016, p.p.: 1-68.

[25] Yaowen Chen, “Comparison of Graph Databases and Relational

Databases When Handling Large-Scale Social Data”, Master thesis,
University of Saskatchewan, pp: 1-91

[26] Kron Company, “Kron - Product Catalog - Assets – Order”,

Internal Document, 2019.
[27] Internet, August 2019,

https://www.arangodb.com/arangodb-graph-course/
[28] Internet, August 2019,

https://repozitorij.pmf.unizg.hr/islandora/object/pmf%3A3234

[29] J. Stücke: „From Zero to Advanced Graph Query Knowledge with
ArangoDB” Internet, August 2019,

https://www.arangodb.com/2017/05/zero-advanced-graph-query-

knowledge-arangodb/
[30] Internet, August 2019,

http://searchmicroservices.techtarget.com/definition/REST-

representational-state-transfer
[31] Internet, August 2019,

https://www.arangodb.com/docs/3.4/getting-started-coming-from

