
Transforming Product Catalogue Relational into 

Graph Database: a Performance Comparison 
Josip Lorincz*, Vlatka Huljić**, Dinko Begušić* 

* Faculty of electrical engineering, mechanical engineering and naval architecture (FESB)/Department of electronics 

and computing, University of Split, Split, Croatia, e-mail: josip.lorincz@fesb.hr; dinko.begusic@fesb.hr 
** Kron d.o.o., Split, Croatia, e-mail: vlatka.huljic@kron.hr 

 
Abstract - Due to the continuous expansion of telecom 

operators (TOs) services and subscriber’s base, a number of 

objects in TO product catalogue (PC) traditionally developed 

employing some relational database (RD) rapidly increase. 

This can result in degraded PC database performance in terms 

of reduced object visibility or slow query response time, which 

mandates a search for new types of databases that can cope 

with such challenges. A possible solution to these challenges 

is the transformation of RD into some graph database (GD), 

with visualisation and organisation capabilities that can cope 

with the increasing complexity of PC RDs. Hence, in this 

paper, a novel implementation concerning the transformation 

of a set of PC data and functions of the TO RD into 

ArangoDB GD is proposed. The proposed approach allows the 

upgrading of PC RD into a higher presentation layer through 

the implementation of the GD, which enables advanced data 

analysis and visualization. The developed solution shows that 

GD with appropriately structured queries, data and links 

between them, improves the visibility and simplifies the entire 

search process. Obtained results show that GD outperforms 

RD in terms of search query response time for different 

functions executed on an equal amount of database objects. 
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I. INTRODUCTION 

The telecom operator’s (TOs) product catalogue (PC) 

containing all details of the products (services) to 

costumers is a very important module for their business. 

The PC structure defined with Enhanced Telecom 

Operations Map (eTOM) standards consists of entities 

and relationships based on which, packages and 

telecommunication service offers to the costumers are 

formed. eTOM is a part of Frameworx, developed by the 

TeleManagement Forum (TM Forum) [1]. The TM 

Forum is an industry association focused on transforming 

business processes, operations, and systems for managing 

and monetizing online information, communication, and 

entertainment services [2]. Hence, Frameworx is a suite 

of best practices and standards that provide the blueprint 

for effective and efficient business operations of 

enterprises such as TOs.  

TM Forum Frameworx contains the following frames: 

application framework, business process framework, 

information framework and integration framework. The 

business process framework or eTOM describes different 

levels of enterprise (TO) processes, according to their 

significance and priority for the business [3]. Shared 

Information Data (SID) model or the information 

framework describes the information entities over which 

the processes operate, with their characteristics and 

relationships. SID provides definitions for all the 

information that passes through the enterprise among 

business partners and corresponding service providers. 

SID domain corresponds to the lowest level of the eTOM 

model and is central to the TOs next generation 

operations system support (NGOSS). This model 

represents a key principle for enhancing operations 

support systems (OSS) and business support systems 

(BSS) processes interoperability of TOs [4]. 

Therefore, the SID model offers a “common 

language” for software developers and integrators for 

describing information management of TOs processes. It 

enables simpler and more efficient integration of 

BSS/OSS software applications deployed by different 

vendors into the TO infrastructure. SID model takes into 

account the principles and concepts needed for defining 

shared information. This model also precisely prescribes 

many of the business elements (known as “entities”) of 

interest to TOs and corresponding attributes that specify 

these entities (known as Aggregate Business Entities 

(ABSs)).  

SID as model covers a vast area of TO activities and 

many companies in the world are working on the 

development and implementation of TO systems covering 

SID related process. Currently, the SID model is based on 

seven domains (market and sales, product, customer, 

service, resource, engaged party and common business 

entities domain) [5]. Product domain presented in Figure 

1. contains different ABEs, which deals with product, 

product specification, product offering, strategic product 

portfolio plans, product performance, product usage, 

product configuration, product test and loyalty [6]. In 

fact, SID product domain elements are those elements 

which are fully covered and specified within the PC of 

most of the TOs.  

The product domain as part of the SID is one of the 

TO system domains which has been analysed in this 

paper and PC as the main component of the SID product 

domain has been developed utilizing graph database (GD) 

concept. Since the number, lifecycle and contract 

operations related to TO products’ can be huge, 

especially for large TOs, PCs eventually become very 

complex and hard to manage by means of relational 

databases (RDs) which are commonly used so far for PC 

management. Thus, in this paper, several functions of the 

real PC used by a prominent European TO are extracted 

from an implemented RD and transformed into the newly 

developed multifunctional GD. The capabilities and 

functions of a GD implemented on a real model of PC are 

explored and compared with that equivalent in the RD.



 
Figure 1: Product domain aggregate business entities of the SID model [6]  

 

The comparison of the two PC database implementations 

shows that the proposed GD implementation outperforms 

the RD implementation. 

The remaining structure of this paper is organised as 

follows: related work presenting an overview of relevant 

literature dedicated to the transformation of RD into GD 

is discussed in Section II. Section III explains research 

motivation and describes the analysed PC of TO. In 

Section IV, the transformation of the RD into GD is 

presented. In the next Section V, the functionality of PC 

as GD is described. A comparison of developed 

multifunctional GD and RD in terms of performance are 

shown in Section VI. Finally, some concluding remarks 

are given in Section VII.  

II. RELATED WORK 

There has been some extent of work in the area of 

transforming an RD into a GD. Soussi in [7] analyses the 

possibility that an RD could be transformed into some 

other model that can further be used for developing the 

GD. Some of the models proposed in the literature are 

based on eXtensible Markup Language (XML), Entity-

Relationship (ER) or Resource Description Framework 

(RDF) [8-10]. The basic drawback of these approaches is 

in the lack of possibility to detect interactions among 

generated nodes without the appropriate ontology which 

is needed for defining tables and data being built 

beforehand. Hence, efficient algorithms for converting 

RD into GD by building a graph through some other in-

between model are yet to be proposed.  

The other approach to the transformation of RD into 

GD is based on tools that enable feedback from an RD in 

the form of a graph, through posing a query in a format of 

search keywords that could be found somewhere in the 

database tuples. Such tools proposed in literature differ in 

modelling the tuples as the graph nodes which are 

connected by edges representing foreign keys or 

transitive tables [11-14]. Recently proposed tools for 

generating a GD from an RD enable graph mining 

techniques on relational data, however, the drawback of 

these tools is that they rely on the user which must strictly 

define the data being converted [15-16]. Another 

approach in transforming RD to GD proposed in [17] and 

[18] are based on conceptual graphs or relation-of-

relations graphs, respectively. The first approach is not 

suitable for frequent subgraph mining from the 

perspective of entities, while the second approach, 

although having appropriate conversion duration, lacks 

testing on larger databases. Approaches for converting 

the entire RD to a GD are proposed in [19 -21]. The 

approach presented in [19] is based on transforming 

dependency graphs for the entities in the system into a 

hypergraph model for the RD, which can be used to 

develop the domain relationship model that can be 

converted into a GD model. In [20], an approach to 

automatically migrate data and queries from RD to GD is 

presented. Algorithms proposed in [21] are independent 

of the data semantics and provide the conversion between 

RD and GD without data loss. 

Presented overview of solutions for transferring RD 

into GD confirms that there is no ideal tool that can 

merge automatic transfer of any RD into (any) GD. Due 

to differences in structure and data organization of 

versatile RDs and GDs, the conversion tools must be 

adopted for specific RD and GD, in order to read the 

relational data of RD and load it into the GD in as few 

steps as possible. Hence in this paper, another approach 

to transferring RD characteristic for PC of TOs into 

contemporary GD is presented.  

There are a number of GDs currently available, such as 

Sparksee (formerly known as DEX), AllegroGraph, 

Neo4j, HyperGraphDB, Infinite Graph, ArangoDB, 

OrientDB, etc. and comparison of these and some other 

GDs are given in [22-23]. According to [23], ArangoDB 

and Neo4j GD obtain the highest scores in terms of 

comparison based on features such as flexibility, query 

language, sharing, backups, multimodality, multi-

architecture capabilities, scalability and cloud readiness. 

This motivates the selection of ArangoDB as one of the 

best candidates for analyses presented in this paper. 

Although ArangoDB and Neo4j outperform other 

currently available GDs in terms of mentioned features, 

results of performance comparison among RDs and 

Neo4j GD have been already reported in [24-25]. 

However, to the best of our knowledge, a performance 

comparison between the RD and ArangoDB GD on the 

concrete application has not been reported in the 

literature. To fill this gap, this paper presents 

performance comparison among ArangoDB GD and an 

RD for PC as the specific TO use case.  

III. RESEARCH MOTIVATION FOR PRODUCT 

CATALOGUE TRANSFORMATION 

To achieve the functionality of the PC, modules that 

contain product information such as the basic entities (the 

general names for any service), attributes, prices, product 

offerings, etc. are required [26]. The existence of the 

relationship between these entities enables the creation of 

complex products grouped in packages offered to the 

users by the TO. The structure and number of elements of 

each TO PC can differ in complexity and size.  

The data model of the PC module analysed in this 

work contains different basic entities (attributes, 

products, product relations, attribute mapping, products 

business rules, product offerings, prices, price lists and 

sales context) which are presented in Figure 2. Links 

between entities of the PC model emphasize the complex 

structure of the PC. 

In the presented analyses, part of the real PC model 

used by one European middle-size TO was originally  



 
 

 

 

 

 

 
Figure 2: PC model 

 
Figure 3: Example of an existing PC model in the relational database 

 

implemented and used in the form of the RD. An example 

presenting a listing of the PC elements in the form of the 

table, with main products structured in the RD are shown 

in Figure 3. A Toad software tool was used to work with 

RDs (Figure 3). This tool allows developers, database 

administrators and database analysts to manage RDs and 

non-relational databases by Structured Query Language 

(SQL) queries.  

Since it is challenging to cope with the multitude of 

data and have a good overview of all database elements, 

administrators of such RDs start to have the problem of 

managing the PC. The question that arises was can some 

other PC data structure offer faster PC database search 

and better visualisation of PC elements, especially in light 

of necessity for the continuous expenditure of TOs PC 

with new products and corresponding elements. The 

transformation of the existing RD into new datasets with 

an upgrade to the GD was a valuable option to the TO. 

Hence, the research presented in this paper was motivated 

with the goal related to the transformation of data from an 

RD into the GD format. This can gain a new visualisation 

dimension of PC and additional information that will 

serve for better analysis of the PC data. The idea was to 

use the graph of the database to attribute a PC in order to 

get information about: where the services are used and 

under what conditions, what are the geographic locations 

of services used by users and how used services are 

represented. All this information cannot be easily 

visualized in existing TO RD. However, such information 

is important for TO marketing, which must optimize 

offering of the service in the geographical area covered 

by TO and also for the technical implementation and 

maintenance of the TO equipment including fault 

recovery. 

IV. IMPLEMENTING PRODUCT CATALOGUE BY MEANS 

OF GRAPH DATABASE 

According to presented in the previous section, PC 

database management can be a difficult task when it 

comes to large amounts of data, and the problem can be 

compounded when multiple data formats are involved. 

For the development of GD, in this work, the open-source 

ArangoDB as not only SQL (NoSQL) database type 

having GD capabilities were selected for administration 

of PC data transformed from Oracle v12c RD. This 

database type is specifically designed to manage multiple 

data formats in a single instance. The ArangoDB provides 

GD capabilities, database document management and 

key-value storage [27]. 

Unlike RDs that have a strictly defined data schema, 

ArangoDB has a dynamic data schema [28]. Data in 

ArangoDB are stored as JavaScript Object Notation 

(JSON) documents. The documents are grouped into 

“collections” that correspond to a table in RDs. The 

documents in the collection have a unique primary 

document key that automatically stores and encodes the 

identity of the document, thus storing the document in the 

key/value container. The created collection consists of 

documents stored as vertices and edges in the form: 

_from the source point value _to the value of the target 

vertex [29]. Combining vertices and edge collections 

produce a graph. The proposed transformation of data 

from the RD into GD is performed through the following 

phases: 

A. The first phase: export data from a relational 

database 

The first phase in the process of transforming PC 

from the RD into GD structure is related to the export of 

selected data from an RD into a GD, more precisely into 

the ArangoDB database (Figure 4). These data operations 

are performed using SQL queries (Figure 4a).  

The first two queries extract the data that will be 

entered into the vertices collections of GD, and the third 

query extract data which will be extrapolated into the 

edges collection of GD. The first phase ends when data 

from the RD are extracted in a .xls file format that is 

stored in Comma Separated Values (CSV) data format 

(Figure 4a). 

B. The second phase: import data into ArangoDB  

The second phase of transferring RD into GD is 

dedicated to the import of exported data form RD into the 

GD (Figure 4). The ArangoDB contains a command-line 

client tool called Arangoimport (Figure 4a). This client 

command tool can be used to import JSON, CSV and tab-

separated values (TSV) format data into ArangoDB. In 

our analyses, JSON and CSV as common data formats 

are used (Figure 4a). Arangoimport is called from the 

command line every time when each file (JSON or CSV)  

wants to be imported into the GD (Figure 4a). Hence, the 
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Figure 4. The proposed concept for transforming relational into GD based on relational data export and: a) direct SQL queries, b) REST API methods  

 

CSV data format can be imported directly (Figure 4a), or 

it can be formatted into JSON format using format 

converter and imported in GD (Figure 4a). The data 

importing results with the transfer of PC data objects 

consisted of attribute-value pairs and array data types in 

GD. When data import is done, it is possible to continue 

working with the same data model previously used.  

Another way of importing data from an RD is to 

expose the ArangoDB application programming interface 

(API) over the hypertext transfer protocol (HTTP) server, 

making the server easily accessible for different clients 

and tools (Figure 4b). Data exported in the first phase are 

reachable through exposed API and converted into JSON 

format for purpose of transmission into ArangoDB. 

According to Figure 4b, the JSON data is sent and 

received over a well-known HTTP server protocol which 

provides a RESTful API (REST API).  

The REST API methods (GET, POST, PUT, 

DELETE, PATCH, etc.) represent the architectural style 

used for creating a web service for the transfer of 

resource state views (Figure 4b). Usage of these methods 

is popular in practice due to their simplicity and the fact 

that they rely on existing HTTP protocol and 

corresponding features, while HTTP defines the format 

and method of messaging [30].  

C. The third phase: creating collections in ArangoDB 

and graph formations  

In ArangoDB, documents are stored in collections. 

Collections have names, which describe what kind of 

information the documents contain. Each document 

requires a key that uniquely identifies it within a 

collection. It can be assigned by the user upon creation, 

or ArangoDB will generate one. Document keys and 

document identifiers (IDs) are always indexed. The index 

on the _key attribute is called a primary index. It exists 

for each collection and can’t be removed. There are two 

types of collections in ArangoDB: vertex and edge 

collections (Figure 5). Documents in an edge collection 

have two additional attributes, _from and _to. Both must 

have document IDs to link documents together. The 

document that links them is called an edge and the linked 

documents are called vertices in the graph model (Figure 

5). When creating a graph model based on an RD model, 

it is important to be aware that the row in the RD is 

equivalent to a node in the GD, and that the table name is 

equivalent to the node label in the GD model.  

The ArangoDB uses ArangoDB query language 

(AQL) for executing procedures over graphs, as well as 

over individual collections. Although some keywords 

overlap, AQL syntax is different from RD SQL syntax. 

The most notable difference is in the concept of loops in 

AQL, which makes AQL look like programming 

language [31]. AQL has a language construct for looping 

through data and the most common form is the FOR loop 

used with a collection of documents (similar to SELECT 

in SQL). Complex object and array manipulations can be 

done using AQL queries (INSERT, UPDATE, 

REPLACE, DELETE, etc.) and operators (FILTER, 

SORT, LIMIT, etc.), what makes AQL very powerful 

query language that remains easy to write and read.  

V. THE FUNCTIONALITY OF PRODUCT CATALOGUE AS 

GRAPH DATABASE 

As previously indicated, the PC presents description 

and characteristics of TO services offered to customers 

and contains all necessary information related to the 

specific product. An example of graphical representation 

obtained through developed GD for specific TO product 

is presented in Figure 5. The graphical representation 

obtained through implementation of GD shows the 

relationship between templates (e.g. user mail addresses 

(“MAIL”), contracts (“OTT ugovor”), etc. in Figure 5) of 

PC and their attributes which can be characteristic for the 

specific template (e.g. additional service (“Dodatna 

usluga”), service and service packet (“Usluga i paket 

usluge”), etc. in Figure 5) or shared among different 

templates (e.g. service name (“Naziv usluge”), name and 

surname of the owner (“Ime i prezime vlasnika”), etc. in 

Figure 5).  

The template is prepared textual document used when 

generating a new document instance and its attributes are 

used to describe an entity or to extend the meaning of an 

entity. This means that if there is a link between 

templates and their attributes, internal logic generates a 

document with its attributes representing dynamic fields 

in it. The view is filtered by the name contained in the 

template or by attribute description, what generates query 

results as those presented in Figure 5. This approach 

gives a credible view of all related and unrelated elements 

in the graph of GD. In this way, an error can easily be 

detected if there must be a connection between PC 

elements (templates and attributes), but no link exists in 

the graph model. Unlike RDs where data search is a long 

process, GD improves the entire search process by simple 

visualization of the data and the links between them 

(Figure 5).  

Services offered by the TO are tracked through the 

concept of the customer’s assets. They represent the state 

of services that the customers use at any given time. For 

TOs, it is important to have a correlation between used 

services and corresponding products and locations where 

they are installed. As an example, for some selected 

dataset, Figure 6 presents a relationship between products  



 
Figure 5. The relationship of templates and attributes in GD 

 

and locations of product usage, where templates (e.g. 

“SESVETE”, “ZAGREB”, etc. in Figure 6) represent 

locations of used products, while attributes (e.g. S service 

packet no. 19 (“S paket 19”), L service packet no. 19 (“L 

paket 19”), etc. in Figure 6) identify a specific product. 

The selected dataset realistically shows the relationship of 

products sold to a customer in a particular place of 

residence (Figure 6). Displaying the density of services 

and corresponding product distribution by location 

(place), gives the TO an insight into the actual state of 

use of the specific service and corresponding product. 

This information is useful for making decisions about the 

need to change the current state, i.e. create new services 

and corresponding products or use existing ones in the 

areas not covered with specific TO service. 

Hence, developed ArangoDB GD ensures one of the 

main advantages of GDs, which is performing simple 

queries on a diverse set of data, what results with a 

comprehensive and detailed view of the requested 

information. 

VI. PERFORMANCE ANALYSES 

Performance analysis is based on a comparison of 

developed multifunctional GD (ArangoDB) and existing 

RD (Oracle). Analyses are based on the measurement of 

SQL and AQL query execution response time. For 

realistic comparison, the same amount of data related to 

the PC of TO was used for comparing query response 

time in RD and GD. This measurement is performed for 

the three queries (Q1, Q2, and Q3) executed in the RD 

and GD (Figure 7). Queries differ in terms of scope and 

complexity of the search, which is directly related to the 

number of analyzed database elements.  

The Q1 query in the RD search for a custom set of data 

(e.g. places, products, link type, etc.) and 90 database 

elements are the result of the search. The Q1 query 

execution time in the RD is 109 ms, while in the 

ArangoDB GD is significantly faster and equals to 0.695 

ms (Figure 7).  

The Q2 query provides information about which 

attributes are attached to the selected template and gives 9 

elements as a result. The speed of query execution differs 

significantly in this example, because the GD has a great 

advantage in terms of execution time which is equal to 

0.960 ms and the 43 ms for the RD (Figure 7). 

To have reliable analyses, a larger amount of PC data 

was taken in the next example with the Q3 query, where 

the query results in 1000 database elements. The Q3 

query search for all the attributes contained in the 

products table (collection) of the PC (e.g. group 

(“GRUPA”), type (“VRSTA”), model (“TIP”), line 

(“LINIJA”)). In this case, query execution time in the RD 

is 226 ms (Figure 7), while in the GD equals to 5.355 ms.  

Based on the measured execution time of individual 

queries, it can be concluded that query execution in the 

GD is significantly faster compared to the RD (Figure 7). 

For some query types, GD outperforms RD with more 

than 42 times faster response time. Also, in Figure 7 can 

be seen that better performance is evident for GD where 

the query execution time does not increase significantly 

with the increase in the number of search data objects, 

which is not the case with RD. Hence in developed GD, 

queries are executed faster and outcomes of queries give 

more comprehensive results in terms of their 

visualization. The faster execution time of GD is a direct 

consequence of the better structural organization of 

ArangoDB GD, what confirms that this type of GD is 

suitable for transforming the PC of TO from a 

conventional RD.  

VII. CONCLUSION 

The PC structure based on eTOM standards contains 

entities and relationships according to which packages of 

telecommunication services are formed and offered to 

users. PCs are traditionally developed in the form of an 

RD. Due to the constant increase in a number of services 

and subscriber base, the complexity of relational PC 

database management became challenging for TO 

database administrators. This requires new concepts in 

the development and management of the relational PC 

databases of TOs. This paper gives a contribution to 

devising such new concepts through the presentation of a 

new approach for transformation of TO relational PC 

database into GD. The process phases of transforming 

RD (Oracle) into GD (ArangoDB) are described, with the 

presentation of developed GD structure and performance 

comparison among analyzed databases. 

It is shown that GD with advanced queries supported 

through AQL, graph data structure and links between GD 

elements, simplify the entire search process and it is 

applicable for use when a larger amount of different data 

structures must be managed. A comparison of analysed  



 
Figure 6. Relationship between product and location of product usage presented in GD 

 

 
Figure 7. Query execution response time  

 

databases show that GD offers a higher presentation level 

which enables more comprehensive data analysis and 

visualization. The greatest advantage of developed GD 

over the RD is reflected in the speed of query execution, 

for which GD significantly outperforms RD. Due to a 

very important feature of managing and storing large 

amounts of versatile data structures, the ArangoDB is 

expected to be widely used in practice, and it is 

particularly suitable for the development of TO PCs. Our 

future research activities will be focused on the 

automatization of data transfer form RDs into GDs. 
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